DSpace Repository

A Classification Model for Water Quality analysis Using Decision Tree

Show simple item record

dc.contributor.author Gakii, Consolata
dc.contributor.author Jepkoech, Jennifer
dc.date.accessioned 2019-10-15T08:12:02Z
dc.date.available 2019-10-15T08:12:02Z
dc.date.issued 2019-06
dc.identifier.citation European Journal of Computer Science and Information Technology Vol.7, No.3, pp.1-8 en_US
dc.identifier.issn 2054-0965
dc.identifier.uri http://repository.embuni.ac.ke/handle/embuni/2203
dc.description.abstract A classification algorithm is used to assign predefined classes to test instances for evaluation) or future instances to an application). This study presents a Classification model using decision tree for the purpose of analyzing water quality data from different counties in Kenya. The water quality is very important in ensuring citizens get to drink clean water. Application of decision tree as a data mining method to predict clean water based on the water quality parameters can ease the work of the laboratory technologist by predicting which water samples should proceed to the next step of analysis. The secondary data from Kenya Water institute was used for creation of this model. The data model was implemented in WEKA software. Classification using decision tree was applied to classify /predict the clean and not clean water. The analysis of water Alkalinity,pH level and conductivity can play a major role in assessing water quality. Five decision tree classifiers which are J48, LMT, Random forest, Hoeffding tree and Decision Stump were used to build the model and the accuracy compared. J48 decision tree had the highest accuracy of 94% with Decision Stump having the lowest accuracy of 83%. en_US
dc.language.iso en en_US
dc.subject Data Mining en_US
dc.subject classification model en_US
dc.subject Decision tree en_US
dc.subject Weka Tool en_US
dc.subject water quality en_US
dc.title A Classification Model for Water Quality analysis Using Decision Tree en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account