dc.contributor.author |
Kinyili, Musyoka |
|
dc.contributor.author |
Kitavi, Dominic M. |
|
dc.contributor.author |
Ngari, Cyrus G. |
|
dc.date.accessioned |
2019-06-06T12:07:06Z |
|
dc.date.available |
2019-06-06T12:07:06Z |
|
dc.date.issued |
2019-05 |
|
dc.identifier.citation |
Journal of Advances in Mathematics and Computer Science 32(3): 1-20, |
en_US |
dc.identifier.issn |
2456-9968 |
|
dc.identifier.uri |
http://repository.embuni.ac.ke/handle/embuni/2166 |
|
dc.description.abstract |
This paper proposes a new sensor-array geometry (the 2-circle concentric array geometry),
that maximizes the array's spatial aperture mainly for bivariate azimuth-polar resolution of
direction-of-arrival estimation problem. The proposed geometry provides almost invariant
azimuth angle coverage and o ers the advantage of full rotational symmetry (circular invariance)
while maintaining an inter-sensor spacing of only an half wavelength (for non-ambiguity with
respect to the Cartesian direction cosines). A better-accurate performance in direction nding
of the proposed array grid over a single ring array geometry termed as uniform circular array
(UCA) is hereby analytically veri ed via Cram er-Rao bound analysis. Further, the authors
demonstrate that the proposed sensor-array geometry has better estimation accuracy than a
single ring array. |
en_US |
dc.language.iso |
en |
en_US |
dc.subject |
Antenna arrays |
en_US |
dc.subject |
array signal processing |
en_US |
dc.subject |
direction-of-arrival estimation |
en_US |
dc.subject |
parameter estimation |
en_US |
dc.subject |
planar circular arrays |
en_US |
dc.title |
Aperture Maximization with Half-Wavelength Spacing, via a 2-Circle Concentric Array Geometry that is Uniform but Sparse |
en_US |
dc.type |
Article |
en_US |