• Login
    View Item 
    •   Repository
    • Open Access Articles
    • Open Access Journals
    • Biology and Biotechnology
    • View Item
    •   Repository
    • Open Access Articles
    • Open Access Journals
    • Biology and Biotechnology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Association of XbaI GLUT1 Polymorphism with Susceptibility to Type 2 Diabetes Mellitus and Diabetic Nephropathy

    Thumbnail
    View/Open
    Full text (367.4Kb)
    Date
    2016-03
    Author
    Ramadan, Ragaa A.
    Zaki, Ahmed M.
    Magour, Gehan M.
    Zaki, Moyassar A.
    Aglan, Sarah A.
    Madkour, Marwa A.
    Shamseya, Mohammed M.
    Metadata
    Show full item record
    Abstract
    Objectives: Diabetic nephropathy (DN) is one of the chronic microangiopathic complications of type 2 diabetes (T2DM) and has become the most frequent cause of end-stage renal disease. The XbaI polymorphism in the glucose transporter (GLUT1) has been suggested in the development of DN. We examined the association between XbaI polymorphism of GLUT1 and susceptibility to T2DM and development of DN. Methods: The study included 227 T2DM patients divided into 107 without DN (DM − DN) and 120 with DN (DM + DN), in addition to 100 apparently healthy controls. Genotyping was done by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Results: The GLUT1 XbaI T allele was associated with increased susceptibility to T2DM, when comparing the healthy controls to the whole diabetic group, odds ratio (OR) = 1.899, 95% confidence interval (CI) (1.149 - 3.136), p = 0.011. This association was also significant between healthy controls and DM − DN OR = 1.997 (1.079 - 3.699), p = 0.026 as well as between healthy controls and DM + DN OR = 1.818 (1.016 - 3.253), p = 0.042. However there was no significant association of XbaI polymorphism with DN when comparing DM − DN to DM + DN OR = 0.910 (0.474 - 1.747), p = 0.777. Conclusion: XbaI T allele is associated with increased susceptibility to T2DM, but not to development of DN. Further studies are needed to replicate such findings.
    URI
    http://dx.doi.org/10.4236/ajmb.2016.62008
    http://hdl.handle.net/123456789/819
    Collections
    • Biology and Biotechnology [193]

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV