• Login
    View Item 
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait?

    Thumbnail
    View/Open
    Full text (765.5Kb)
    Date
    2012-03
    Author
    Skelton, R. P.
    Midgley, J. J.
    Nyaga, Justine M.
    Johnson, S. D.
    Cramer, M. D.
    Metadata
    Show full item record
    Abstract
    Although pubescence has traditionally been considered to be related to the water economy of plants, the results are ambivalent and vary between different species. We tested two contrasting hypotheses for the functional significance of leaf pubescence of Proteaceae species from the Cape Floristic Region. First, we hypothesised that pubescence is a xeromorphic trait that conserves water by increasing the boundary layer resistance to diffusion. Water loss was measured in two morphotypes of Leucospermum conocarpodendron (L.) Buek that differ in the degree of leaf pubescence, using both gas exchange and gravimetric techniques. Pubescence contributed less than 5% of total leaf resistance and pubescent leaves transpired at least as rapidly as glabrous leaves due to having larger numbers of small stomata per leaf area. Although pubescence was not associated with drier sites in L. conocarpodendron, there was a weak negative correlation between rainfall and pubescence across 18 other Proteaceae species. We also hypothesised that pubescence is a radiation-protective trait. We assessed the effect of pubescence on light reflectance, leaf temperature, fluorescence and gas exchange characteristics in situ. Pubescent leaves of L. conocarpodendron were 19.2 ± 0.08% more reflective than glabrous leaves and had significantly greater pre-dawn photochemical efficiency. There was a positive association between leaf pubescence and habitat temperature in Proteaceae. We conclude that although pubescence is unlikely to be a xeric adaptation, it could serve a role in reducing photoinhibition and heat loading in Proteaceae species.
    URI
    http://dx.doi.org/10.1071/BT11231
    http://hdl.handle.net/123456789/565
    Collections
    • Articles: Department of Biological Sciences [285]

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV