• Login
    View Item 
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An overview of advances in bioinformatics and its application in functional genomics

    Thumbnail
    View/Open
    Full text (188.8Kb)
    Date
    2010-04-28
    Author
    Mwololo, J.K.
    Munyua, J.K.
    Muturi, Phyllis W.
    Munyiri, S.W.
    Metadata
    Show full item record
    Abstract
    Bioinformatics is the scientific discipline that is concerned with the efficient management and useful interpretation of large scale biological information. Functional genomics aims at mapping DNA sequences and the components they encode for, to the function they perform. Initial efforts in bioinformatics were focused on the analysis of DNA sequence data. Presently, the scope and objectives of bioinformatics research and development have been broadened owing to the accelerating generation of data from various sources and for various cellular processes, the continuously evolving analytical technologies and the increasing computational capability. Bioinformatics offers an indispensable technology for function assignment and it has been used widely for gene annotation based on protein function predictions. However, as the sequence information is growing exponentially, the number of genes of unknown function is also growing, creating a challenge in the current computational approaches applied in bioinformatics. These limitations are being overcome through advances combining experimental and computational approaches, e.g. nanofabrication techniques. Despite the progress attained, analysis frameworks that could be used to analyze large data arising from signal transduction and biotransformation to provide quantitative predictions are inadequate. Trancriptome profiling is important because it provides information on the number of genes and their abundance in a tissue or given an induced condition e.g. diseased plants. Microarrays are hybridization experiments involving comparison of relative amounts of cellular mRNA from two tissue samples. Most of microarrays used in biological sciences can be divided into complementary DNA (cDNA) and oligonucleotide microarrays. The exploitation of hybridization in microarray analyses has sharply accelerated the search for defective genes of interest in both plants and animals. Microarrays provide the means to repeatedly measure the expression levels of a large number of genes at a time. Major limitations of this technology include decreased sensitivity of the arrays to the detection of genes with low expression levels and difficulties in data exchange due to the lack of standardization in platform fabrication, assay protocols and analysis methods.
    URI
    http://hdl.handle.net/123456789/291
    Collections
    • Articles: Department of Biological Sciences [285]

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV