DSpace Repository

Direction Finding with the Sensors' Gains Suffering Bayesian Uncertainty — Hybrid CRB and MAP Estimation

Show simple item record

dc.contributor.author Yue, Ivan Wu
dc.contributor.author Kitavi, Dominic M.
dc.contributor.author Lin, Tsair-Chuan
dc.contributor.author Wong, Kainam Thomas
dc.date.accessioned 2018-07-10T09:50:12Z
dc.date.available 2018-07-10T09:50:12Z
dc.date.issued 2016-08
dc.identifier.citation IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 4, pp. 2038 – 2044 en_US
dc.identifier.issn 0018-9251
dc.identifier.uri https://ieeexplore.ieee.org/abstract/document/7738373/
dc.identifier.uri DOI: 10.1109/TAES.2016.150193
dc.identifier.uri http://hdl.handle.net/123456789/1756
dc.description.abstract The paper analyzes how a sensor array's direction-finding accuracy may be degraded by any stochastic uncertainty in the sensors' complex value gains, modeled here as complex value Gaussian random variables. This analysis is via the derivation of the hybrid Cramer-Rao bound (HCRB) of the azimuth-elevation direction-of-arrival estimates. This HCRB is analytically shown to be inversely proportional to a multiplicative factor equal to one plus the variance of the sensors' gain uncertainty. This finding applies to any array grid geometry. The maximum a posteriori (MAP) estimator corresponding to this uncertain gain data model is also derived. Monte Carlo simulations demonstrate that this estimator approaches the lower bound derived. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.subject Sensor array en_US
dc.subject Stochastic processes en_US
dc.subject Uncertainty en_US
dc.subject Data models en_US
dc.subject Covariance matrices en_US
dc.title Direction Finding with the Sensors' Gains Suffering Bayesian Uncertainty — Hybrid CRB and MAP Estimation en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account